
COP 3223: C Programming (File Processing) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

File Processing In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (File Processing) Page 2 © Dr. Mark J. Llewellyn

File I/O In C

• In C, the term stream means any source of input or any

destination for output. All of the programs that we’ve

developed up to this point have obtained their input from a

single stream (the keyboard) and have written all their output

to a single stream (the screen via a command prompt

window).

• Large programs may have several streams active at any

given time, both for input and output.

• While streams can be associated with virtually any I/O

device that is connected to your computer, we’ll focus only

on streams that deal with files (for now at least).

COP 3223: C Programming (File Processing) Page 3 © Dr. Mark J. Llewellyn

File I/O In C
• C views each file simply as a sequential stream of bytes. There

are two basic types of files in C, text files and binary files. For

now, we will consider only text files.

• When a file is opened, a stream is associated with the file.

• Three files and their associated streams are automatically

opened when program execution begins – the standard input,

the standard output, and the standard error.

• Streams provide communication channels between files and

programs.

• For example, the standard input stream enables a program to

read input data from the keyboard. The standard output stream

enables a program to print data on the terminal screen.

COP 3223: C Programming (File Processing) Page 4 © Dr. Mark J. Llewellyn

File I/O In C

• Opening a file returns a pointer to a FILE structure, which is

defined in <stdio.h> that contains information the

computer needs to access and process the file.

• The standard input, standard output, and standard error

streams are accessed using file pointers stdin, stdout,

and stderr.

• The standard library <stdio.h> provides many different

functions for reading and writing data from streams (files).

We’ve been using scanf and printf for some time now

and you should be quite familiar with these functions.

• The scanf function reads from the stdin stream while

the printf function writes to the stdout stream.

•

COP 3223: C Programming (File Processing) Page 5 © Dr. Mark J. Llewellyn

How To Create A File Pointer

• Before you can read or write to a file (stream) in C, you must

define a pointer to that file. This is done as follows in C:

FILE *filePtr;

where filePtr is simply a variable name of your

choosing.

• NOTE: All the statement above does is declares the file

pointer…it does nothing else!

COP 3223: C Programming (File Processing) Page 6 © Dr. Mark J. Llewellyn

How To Initialize A File Pointer

• In order to properly “initialize” a file pointer, it must be set

to “point” to a particular file.

• To do this you must specify two things: (1) the name of the

file, and (2) the mode in which the file is to be opened.

– (1) is either a relative or absolute file name. A relative file name is

in the current directory and an absolute file name contains the full

pathname to the file.

– (2) The mode is typically one of r, w, or a. “r” opens the file for

reading only. “w” opens the file for writing. “a” opens the file

for appending (writing to the end of the file). We’ll see more modes

later.

• This is done using the fopen function whose general format

is: fopen(“filename”, “mode”);

COP 3223: C Programming (File Processing) Page 7 © Dr. Mark J. Llewellyn

How To Initialize A File Pointer

Example:

#include <stdio.h>

int main()

{ FILE firstInputFilePtr;

FILE secondInputFilePtr;

FILE outputFilePtr;

firstInputFilePtr = fopen(“mydata.dat”, “r”);

secondInputFilePtr = fopen(“C:/data/myfile.txt”, “r”);

outputFilePtr = fopen(“myoutput.dat”, “w”);

. . .

Initializes the file pointer named
firstInputFilePtr to the file named

“mydata.dat” in the current working

directory. File is opened for reading.

Initializes the file pointer named
secondInputFilePtr to the file named

“myfile.txt” in the directory whose

path is “C:/data/”. File is opened

for reading.

Initializes the file pointer named
outputFilePtr to the file named

“myoutput.dat” in the current working

directory. File is opened for writing.

COP 3223: C Programming (File Processing) Page 8 © Dr. Mark J. Llewellyn

How To Initialize A File Pointer

COMMON PROGRAMMING ERROR

Windows programmers beware when using absolute file names in a call to
fopen. Standard convention is to use backslashes in file pathnames. However,

consider the following case:
fopen (“C:\data\testfile.txt”, “r”);

In C the \t in the string will be interpreted as a character escape corresponding

to a tab.

The way around this is to use the forward slash as separators in file path names.
In this case, the correct version of the fopen call shown above would be:

fopen (“C:/data/testfile.txt”, “r”);

COP 3223: C Programming (File Processing) Page 9 © Dr. Mark J. Llewellyn

How To Initialize A File Pointer
GOOD PROGRAMMING PRACTICE

Whenever you attempt to open a file, by initializing the file pointer to that file, C
returns the pointer if the call to fopen is successful and returns the value NULL if

the call is not successful. Therefore, it is always a good practice to test the value
returned by the call to fopen. This is commonly done as follows:

if ((filePtr = fopen(“filename”, “mode”)) == NULL) {

printf(“File could not be opened\n”);

}

else {

. . .

}

Note that if the mode of the file is set to “r”, then the file must already exist before it

can be opened. If the file mode is either “w” or “a”, then it does not need to exist

before it can be opened (the file will be created dynamically). However, if the mode
is “w” and the file pre-exists the fopen, the previous contents of the file are lost.

COP 3223: C Programming (File Processing) Page 10 © Dr. Mark J. Llewellyn

How To Close A File
• To close a file use the function fclose which takes a single

argument which is a pointer to a file as in:

fclose (filePointer);

• Typically you should close a file as soon as the program is

finished using the file.

GOOD PROGRAMMING PRACTICE

Most operating systems will close any open files that are associated with an

application whenever the application terminates even if the application did not

explicitly close the files. However, it is good programming practice to always

explicitly close any open files used by the program before the program terminates.

Best practice is to close a file as soon as it is known that the program will not

reference the file again. This will free up resources both for your program and

others that may be running on the same system.

COP 3223: C Programming (File Processing) Page 11 © Dr. Mark J. Llewellyn

How To Write To A File
• You are already quite familiar with the printf function that

we have been using to write the output of our programs to the

stdout stream. Recall that the format for a call to the

printf function has this form:

printf(“control string”, other arguments);

• To write to any file (stream) other than stdout; use the

fprintf function which has the following form:

fprintf(fileptr, “control string”, other arguments);

• Notice that the format of a call to fprintf is essentially the

same as that of printf, with the exception that fprintf

requires a pointer to the file to which you are writing. The

printf function did not require this argument because it

defaults to the stdout stream.

COP 3223: C Programming (File Processing) Page 12 © Dr. Mark J. Llewellyn

Putting Everything Together So Far

• Let’s return to one of our standard examples of printing

the sum for each of the first 10 integers.

• We written this program several different ways so far

using different types of repetition structures, but always

the output has been to the terminal screen.

• This time, we’ll create an output file and send our output

to that file rather than to the screen.

• The program is on the next page.

COP 3223: C Programming (File Processing) Page 13 © Dr. Mark J. Llewellyn

Notice that since nothing is being written to the standard

output (the screen) that I don’t need the pause statement

for DevC++ as we’ve been using.

COP 3223: C Programming (File Processing) Page 14 © Dr. Mark J. Llewellyn

The output file named “sums.dat” as viewed using the Notepad++ editor.

COP 3223: C Programming (File Processing) Page 15 © Dr. Mark J. Llewellyn

You can also view “data” files using the DevC++ IDE. To do this,

select “All files” from the file type selection at the bottom of this

window (the open file window). This will let you see files with

extensions other than .c. Then simply click the file you want to see

and it will be displayed in the editor window just like any other file.

See next page.

COP 3223: C Programming (File Processing) Page 16 © Dr. Mark J. Llewellyn

The output file “sums.dat” as viewed

from the DevC++ IDE editor

COP 3223: C Programming (File Processing) Page 17 © Dr. Mark J. Llewellyn

How To Read From A File
• Reading from user defined files operates basically the same as

reading from the stdin stream. Recall that the format for a

call to the scanf function has this form:

scanf(“control string”, other arguments);

• To read from any file (stream) other than stdin; use the

fscanf function which has the following form:

fscanf(fileptr, “control string”, other arguments);

• Notice that the format of a call to fscanf is essentially the

same as that of scanf, with the exception that fscanf

requires a pointer to the file from which you are reading. The

scanf function did not require this argument because it

defaults to the stdin stream.

COP 3223: C Programming (File Processing) Page 18 © Dr. Mark J. Llewellyn

How To Read From A File
• To see a simple example program that reads from a file, let’s

once again redo our sum of integers program.

• This time we’ll read the integer values that are to be summed

from a file.

• First, we need to create this file. You can use any text editor

that you choose to create data files. I’ll just use DevC++ for

this example, and you’ll probably typically do the same since

you’ve already got this environment loaded while you’re

working on your C programs.

• Let’s create the file with one integer on each line of the file and

name the file “integers.dat”.

COP 3223: C Programming (File Processing) Page 19 © Dr. Mark J. Llewellyn

In the DevC++ IDE, when creating the input file,

simply choose “Resource File” from the New option

on the toolbar. Then enter your data. When

finished, the simplest thing to do to save the file

correctly is on the File Name line type:

“filename.extension”

Then click Save.

COP 3223: C Programming (File Processing) Page 20 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 21 © Dr. Mark J. Llewellyn

How To Read From A File
• Let’s create a second input file named “integers2.dat”, where

the integer numbers from 1 to 10 are placed in the file in

descending order.

• Once the input file is created, we’ll modify our program to read

from this new file.

Integers2.dat file

COP 3223: C Programming (File Processing) Page 22 © Dr. Mark J. Llewellyn

Only change we

need to make to our

program for it to read

from the new file.

COP 3223: C Programming (File Processing) Page 23 © Dr. Mark J. Llewellyn

COP 3223: C Programming (File Processing) Page 24 © Dr. Mark J. Llewellyn

Practice Problems
1. Modify the program on page 20 so that the first line of the file

the program reads from contains an integer that is the number of
integers that will be read from the file. Example: 3 5 6 7, tells
the program to read 3 integers from the file and those numbers
are 5, 6, and 7 in this case. As before, the program is to produce
the running sum of the numbers read from the file.

COP 3223: C Programming (File Processing) Page 25 © Dr. Mark J. Llewellyn

Practice Problems
2. Modify the program you wrote for Practice Problem 1 so that

the output generated by the program is written to an output file
named “integersums.dat”.

COP 3223: C Programming (File Processing) Page 26 © Dr. Mark J. Llewellyn

Practice Problems
3. Construct a C program that in the first part of the program asks

the user how many integers they would like to enter and then
read in that number of integers and write the integers read in to
an output file called “entered numbers.dat”. Then the
second part of the program reads the “entered
numbers.dat” file and produces a running sum of the
numbers in that file and writes the output to a file named
“pracprob3.dat”.

See the next page screen shots of the various files and screens
the user should see or generate.

COP 3223: C Programming (File Processing) Page 27 © Dr. Mark J. Llewellyn

Practice Problems

User interaction via the keyboard

The “entered integers.dat” file

created by the first part of the program

The output file “pracprob3.dat” as generated by

the second part of the program

